JEE Advanced 2018: Registration, Application Form, Dates, Syllabus
JEE Advanced 2018 Poster has been published officially. It is organized for admission to the undergraduate courses leading to a UG, Integrated PG or UG-PG Dual Degree. These courses are offered in the field of Engineering, Architecture, Sciences or Pharmaceutics. JEE Advanced 2018 is a national level entrance exam managed by the IIT, Kanpur. Through this exam, candidates can get admission into IITs & ISM. This IIT JEE exam is the second stage of JEE Main (Joint Entrance Examination). In this article, we have mentioned the complete information about JEE Advanced 2018.
JEE Advanced 2018 Poster has been released officially.Click here to check official poster.
For free ebook click here.
For free Classroom Notes click here
JEE Advanced 2018 Eligibility Criteria for Indian Nationals (including PIO/OCI) has been released officially. Check here for eligibility criteria.
Top 2, 24,000 candidates (including all categories) by scoring positive marks in Paper-1 of JEE (Main)-2018 will be eligible to apply for JEE Advanced 2018.
JEE Advanced 2018 Exam Date has been released now. The exam will be held on 20th May 2018 in fully computer based test mode.
JEE Advanced 2018 exam will be conducted via online mode only by IIT, Kanpur. Click here to get more details.
New Changes in JEE Advanced 2018
For the year 2018, some new changes have been announced in the JEE Advanced exam which are mentioned below:
- The exam will be conducted through online mode only.
- Top 2,24,000 scorers of JEE Main 2018 will be eligible to apply for JEE Advanced 2018.
- Hike in JEE advanced fee after GST.
JEE Advanced 2018 Exam Dates
Here, we are providing official schedule of JEE Advanced exam dates 2018. Check important dates below:
Events | Dates (Announced) |
Online Registration Starts | 4th week of April 2018 |
Online Registration Closes | 1st week of May 2018 |
Admit Card Availability | 2nd week of May 2018 |
JEE Advanced (Paper 1 & Paper 2) | 20th May 2018 Paper 1: 9:00 AM to 12:00 Noon Paper 2: 2:00 PM to 5:00 PM |
Online display of ORS and scanned responses | Last week of May 2018 |
Answer Key Released | 1st week of June 2018 |
Receiving feedback from candidates on answer keys | 1st week of June 2018 |
Declaration of Result | 2nd week of June 2018 |
Architecture Aptitude Test (AAT) Online Registration Date | 2nd week of June 2018 |
Architecture Aptitude Test (AAT) Exam Date | 2nd week of June 2018 |
AAT Result Declaration Date | 3rd week of June 2018 |
Seat Allotment Starts | 3rd week of June 2018 |
JEE Advanced Registration 2018
IIT JEE application form information is given below:
- Candidates can register for JEE Advanced 2018 through online mode only.
- JEE Advanced 2018 Registration will be started from the 4th week of April 2018.
- Candidates will fill & submit the application form till the 1st week of May 2018.
- No other mode will be entertained to get the JEE Advanced application form.
- During registration, candidates have to upload their scanned images in a given format.
- Keep the printout of the JEE Advanced Application Form 2018 for future use.
- Candidates fill the application form correctly, no correction will be allowed after form submission.
Registration Fee
Candidates can pay the registration fee through online (debit card & net banking) or offline (SBI Challan) mode. The fee is neither refundable nor transferable. The fee details are given below:
Category | Fee |
Examination Centres in India | |
Female candidates | Rs. 1300 + GST** |
ST/SC/PwD candidates | Rs. 1300 + GST** |
All other candidates | Rs. 2600 + GST** |
Late Fee | Rs. 500 |
Exam Centres Outside India | |
All candidates | USD 160 + GST** (SAARC Countries) |
All candidates | USD 300 + GST** (Non-SAARC Countries) |
Late Fee | USD 80 |
Eligibility Criteria
Before register for the examination, candidates must check their eligibility criteria first. If candidates will not satisfy the given eligibility criteria, their registration will be cancelled.
Nationality:
- Indian Citizen of India can apply for this exam.
- PIO/OCI candidates can also apply.
JEE Main 2018:
- For JEE Advanced 2018, India nationals (including OCI/PIO) have to appear JEE Main 2018.
Performance in JEE Main 2018:
- Candidates should be among the top 2, 24,000 (including all categories) by securing positive marks in Paper 1 of JEE Main 2018.
Age Criteria:
- Age Limit: Candidates should be born on or after 1st October 1993.
- Relaxation: There is five year relaxation for SC/ST/PwD categories. These candidates must be born on or after 1st October 1988.
Number of Attempts:
- Candidates must appear for JEE Advanced exam (IIT JEE Exam) a maximum of two times in a consecutive years.
- Candidates, those appeared in JEE Advanced 2017 for the first time, they are also eligible.
Appearance in Class XII (or equivalent):
- Candidates should appear for the 10+2 or equivalent examination for the first time in either year 2017 or 2018.
- Candidates, those 10+2 or equivalent examination result for the year 2015-2016 were announced after June 2016, they are also eligible to appear for JEE Advanced 2018.
Earlier Admission at IITs:
- Candidates should not been admitted in an IIT irrespective of whether or not they continued in the programme) or accepted the IIT seat by reporting at the reporting centre in the past. Candidates, those admission at IITs was cancelled, they are also not eligible to apply for JEE Advanced 2018.
- Candidates who are admitted to a preparatory programme in any of the IITs for the first time in 2017, they can apply for JEE Advanced 2018.
- Candidates, those have paid the seat acceptance fee but not accepted the seat are eligible to appear in the JEE Advanced 2018.
Performance in 10+2 or Equivalent Examination:
- Candidates have to score minimum 75% aggregate marks (65% in case of SC/ST/PwD category) in 10+2 or equivalent examination.
- Candidates must be within the category-wise top 20 percentile of qualified candidates in their particular 10+2 or equivalent examination.
- Candidates, those appeared in 10+2 (or equivalent) examination in 2017 but reappeared in 2018, the best of two performances will be considered.
JEE Advanced Exam Pattern
The exam pattern is given here:
- Date of Exam: The examination will be organized on 20th May 2018.
- Mode of Exam: The exam will be held through online mode (computer based test).
- No. of Papers: The exam will be comprised of two papers (Paper 1 & 2). Both papers are compulsory.
- Attempts: Candidates have to attempt both the papers.
- Language: The question paper will be asked in English & Hindi Language.
- Exam Duration: The duration of each paper will be 3 hours.
- Type of Questions: The question paper will contain objective type questions (multiple choice and numerical answer type).
- Subjects: The question paper of both the paper will consist of the three separate sections which include Physics, Chemistry & Mathematics.
Architecture Aptitude Test (AAT) 2018
AAT (Architecture Aptitude Test) exam will be conducted for the candidates who want to get admission to the B.Arch course. Candidates have to appear for the AAT examination. Candidates, those qualified the JEE Advanced 2018 exam only they are eligible to apply for this test. To apply for this exam, candidates have to register themselves through online mode. The exam duration of AAT exam will be three hours. Candidates, those secure marks above than the cut-off marks will be considered as qualifies for the exam. No separate rank list will be made for AAT.
JEE Advanced Syllabus
The JEE Advanced 2018 Syllabus will consist of three subjects such as Physics, Chemistry & Mathematics. Candidates, those want to apply for architecture programme offered by the IITs, they have to appear in AAT (Architecture Aptitude Test) exam. The syllabus of AAT exam will comprised of some extra syllabus like free hand drawing, architectural awareness, geometrical drawing, etc. The syllabus is mentioned here:
CHEMISTRY
Physical chemistry
General topics
Concept of atoms and molecules; Dalton’s atomic theory; Mole concept; Chemical formulae; Balanced chemical equations; Calculations (based on mole concept) involving common oxidation-reduction, neutralisation, and displacement reactions; Concentration in terms of mole fraction, molarity, molality and normality.
Gaseous and liquid states
Absolute scale of temperature, ideal gas equation; Deviation from ideality, van der Waals equation; Kinetic theory of gases, average, root mean square and most probable velocities and their relation with temperature; Law of partial pressures; Vapour pressure; Diffusion of gases.
Atomic structure and chemical bonding
Bohr model, spectrum of hydrogen atom, quantum numbers; Wave-particle duality, de Broglie hypothesis; Uncertainty principle; Qualitative quantum mechanical picture of hydrogen atom, shapes of s, p and d orbitals; Electronic configurations of elements (up to atomic number 36); Aufbau principle; Pauli’s exclusion principle and Hund’s rule; Orbital overlap and covalent bond; Hybridisation involving s, p and d orbitals only; Orbital energy diagrams for homonuclear diatomic species; Hydrogen bond; Polarity in molecules, dipole moment (qualitative aspects only); VSEPR model and shapes of molecules (linear, angular, triangular, square planar, pyramidal, square pyramidal, trigonal bipyramidal, tetrahedral and octahedral).
Energetics
First law of thermodynamics; Internal energy, work and heat, pressure-volume work; Enthalpy, Hess’s law; Heat of reaction, fusion and vapourization; Second law of thermodynamics; Entropy; Free energy; Criterion of spontaneity.
Chemical equilibrium
Law of mass action; Equilibrium constant, Le Chatelier’s principle (effect of concentration, temperature and pressure); Significance of ΔG and ΔG^{0} in chemical equilibrium; Solubility product, common ion effect, pH and buffer solutions; Acids and bases (Bronsted and Lewis concepts); Hydrolysis of salts.
Electrochemistry
Electrochemical cells and cell reactions; Standard electrode potentials; Nernst equation and its relation to ΔG; Electrochemical series, emf of galvanic cells; Faraday’s laws of electrolysis; Electrolytic conductance, specific, equivalent and molar conductivity, Kohlrausch’s law; Concentration cells.
Chemical kinetics
Rates of chemical reactions; Order of reactions; Rate constant; First order reactions; Temperature dependence of rate constant (Arrhenius equation).
Solid state
Classification of solids, crystalline state, seven crystal systems (cell parameters a, b, c, α, β, γ), close packed structure of solids (cubic), packing in fcc, bcc and hcp lattices; Nearest neighbours, ionic radii, simple ionic compounds, point defects.
Solutions
Raoult’s law; Molecular weight determination from lowering of vapour pressure, elevation of boiling point and depression of freezing point.
Surface chemistry
Elementary concepts of adsorption (excluding adsorption isotherms); Colloids: types, methods of preparation and general properties; Elementary ideas of emulsions, surfactants and micelles (only definitions and examples).
Nuclear chemistry
Radioactivity: isotopes and isobars; Properties of α, β and γ rays; Kinetics of radioactive decay (decay series excluded), carbon dating; Stability of nuclei with respect to proton-neutron ratio; Brief discussion on fission and fusion reactions.
Inorganic Chemistry
Isolation/preparation and properties of the following non-metals
Boron, silicon, nitrogen, phosphorus, oxygen, sulphur and halogens; Properties of allotropes of carbon (only diamond and graphite), phosphorus and sulphur.
Preparation and properties of the following compounds
Oxides, peroxides, hydroxides, carbonates, bicarbonates, chlorides and sulphates of sodium, potassium, magnesium and calcium; Boron: diborane, boric acid and borax; Aluminium: alumina, aluminium chloride and alums; Carbon: oxides and oxyacid (carbonic acid); Silicon: silicones, silicates and silicon carbide; Nitrogen: oxides, oxyacids and ammonia; Phosphorus: oxides, oxyacids (phosphorus acid, phosphoric acid) and phosphine; Oxygen: ozone and hydrogen peroxide; Sulphur: hydrogen sulphide, oxides, sulphurous acid, sulphuric acid and sodium thiosulphate; Halogens: hydrohalic acids, oxides and oxyacids of chlorine, bleaching powder; Xenon fluorides.
Transition elements (3d series)
Definition, general characteristics, oxidation states and their stabilities, colour (excluding the details of electronic transitions) and calculation of spin-only magnetic moment; Coordination compounds: nomenclature of mononuclear coordination compounds, cis-trans and ionisation isomerisms, hybridization and geometries of mononuclear coordination compounds (linear, tetrahedral, square planar and octahedral).
Preparation and properties of the following compounds:
Oxides and chlorides of tin and lead; Oxides, chlorides and sulphates of Fe^{2+}, Cu^{2+} and Zn^{2+}; Potassium permanganate, potassium dichromate, silver oxide, silver nitrate, silver thiosulphate.
Ores and minerals
Commonly occurring ores and minerals of iron, copper, tin, lead, magnesium, aluminium, zinc and silver.
Extractive metallurgy
Chemical principles and reactions only (industrial details excluded); Carbon reduction method (iron and tin); Self reduction method (copper and lead); Electrolytic reduction method (magnesium and aluminium); Cyanide process (silver and gold).
Principles of qualitative analysis:
Groups I to V (only Ag^{+}, Hg^{2+}, Cu^{2+}, Pb^{2+}, Bi^{3+}, Fe^{3+}, Cr^{3+}, Al^{3+}, Ca^{2+}, Ba^{2+}, Zn^{2+}, Mn^{2+} and Mg^{2+}); Nitrate, halides (excluding fluoride), sulphate and sulphide.
Organic Chemistry
Concepts
Hybridisation of carbon; σ and π-bonds; Shapes of simple organic molecules; Structural and geometrical isomerism; Optical isomerism of compounds containing up to two asymmetric centres, (R,S and E,Z nomenclature excluded); IUPAC nomenclature of simple organic compounds (only hydrocarbons, mono-functional and bi-functional compounds); Conformations of ethane and butane (Newman projections); Resonance and hyperconjugation; Keto-enoltautomerism; Determination of empirical and molecular formulae of simple compounds (only combustion method); Hydrogen bonds: definition and their effects on physical properties of alcohols and carboxylic acids; Inductive and resonance effects on acidity and basicity of organic acids and bases; Polarity and inductive effects in alkyl halides; Reactive intermediates produced during homolytic and heterolytic bond cleavage; Formation, structure and stability of carbocations, carbanions and free radicals.
Preparation, properties and reactions of alkanes
Homologous series, physical properties of alkanes (melting points, boiling points and density); Combustion and halogenation of alkanes; Preparation of alkanes by Wurtz reaction and decarboxylation reactions.
Preparation, properties and reactions of alkenes and alkynes
Physical properties of alkenes and alkynes (boiling points, density and dipole moments); Acidity of alkynes; Acid catalysed hydration of alkenes and alkynes (excluding the stereochemistry of addition and elimination); Reactions of alkenes with KMnO_{4} and ozone; Reduction of alkenes and alkynes; Preparation of alkenes and alkynes by elimination reactions; Electrophilic addition reactions of alkenes with X_{2}, HX, HOX and H_{2}O (X=halogen); Addition reactions of alkynes; Metal acetylides.
Reactions of benzene
Structure and aromaticity; Electrophilic substitution reactions: halogenation, nitration, sulphonation, Friedel-Crafts alkylation and acylation; Effect of o-, m– and p-directing groups in monosubstituted benzenes.
Phenols
Acidity, electrophilic substitution reactions (halogenation, nitration and sulphonation); Reimer-Tieman reaction, Kolbe reaction.
Characteristic reactions of the following (including those mentioned above)
Alkyl halides: rearrangement reactions of alkyl carbocation, Grignard reactions, nucleophilic substitution reactions; Alcohols: esterification, dehydration and oxidation, reaction with sodium, phosphorus halides, ZnCl_{2}/concentrated HCl, conversion of alcohols into aldehydes and ketones; Ethers: Preparation by Williamson’s Synthesis; Aldehydes and Ketones: oxidation, reduction, oxime and hydrazone formation; aldol condensation, Perkin reaction; Cannizzaro reaction; haloform reaction and nucleophilic addition reactions (Grignard addition); Carboxylic acids: formation of esters, acid chlorides and amides, ester hydrolysis; Amines: basicity of substituted anilines and aliphatic amines, preparation from nitro compounds, reaction with nitrous acid, azo coupling reaction of diazonium salts of aromatic amines, Sandmeyer and related reactions of diazonium salts; carbylamine reaction; Haloarenes: nucleophilic aromatic substitution in haloarenes and substituted haloarenes (excluding Benzyne mechanism and Cine substitution).
Carbohydrates
Classification; mono- and di-saccharides (glucose and sucrose); Oxidation, reduction, glycoside formation and hydrolysis of sucrose.
Amino acids and peptides
General structure (only primary structure for peptides) and physical properties.
Properties and uses of some important polymers
Natural rubber, cellulose, nylon, teflon and PVC.
Practical organic chemistry:
Detection of elements (N, S, halogens); Detection and identification of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl, amino and nitro; Chemical methods of separation of mono-functional organic compounds from binary mixtures.
MATHEMATICS
Algebra
Algebra of complex numbers, addition, multiplication, conjugation, polar representation, properties of modulus and principal argument, triangle inequality, cube roots of unity, geometric interpretations.
Quadratic equations with real coefficients, relations between roots and coefficients, formation of quadratic equations with given roots, symmetric functions of roots.
Arithmetic, geometric and harmonic progressions, arithmetic, geometric and harmonic means, sums of finite arithmetic and geometric progressions, infinite geometric series, sums of squares and cubes of the first n natural numbers.
Logarithms and their properties.
Permutations and combinations, binomial theorem for a positive integral index, properties of binomial coefficients.
Matrices as a rectangular array of real numbers, equality of matrices, addition, multiplication by a scalar and product of matrices, transpose of a matrix, determinant of a square matrix of order up to three, inverse of a square matrix of order up to three, properties of these matrix operations, diagonal, symmetric and skew-symmetric matrices and their properties, solutions of simultaneous linear equations in two or three variables.
Addition and multiplication rules of probability, conditional probability, Bayes Theorem, independence of events, computation of probability of events using permutations and combinations.
Trigonometry
Trigonometric functions, their periodicity and graphs, addition and subtraction formulae, formulae involving multiple and sub-multiple angles, general solution of trigonometric equations.
Relations between sides and angles of a triangle, sine rule, cosine rule, half-angle formula and the area of a triangle, inverse trigonometric functions (principal value only).
Analytical geometry
Two dimensions: Cartesian coordinates, distance between two points, section formulae, shift of origin.
Equation of a straight line in various forms, angle between two lines, distance of a point from a line; Lines through the point of intersection of two given lines, equation of the bisector of the angle between two lines, concurrency of lines; Centroid, orthocentre, incentre and circumcentre of a triangle.
Equation of a circle in various forms, equations of tangent, normal and chord.
Parametric equations of a circle, intersection of a circle with a straight line or a circle, equation of a circle through the points of intersection of two circles and those of a circle and a straight line.
Equations of a parabola, ellipse and hyperbola in standard form, their foci, directrices and eccentricity, parametric equations, equations of tangent and normal.
Locus problems.
Three dimensions: Direction cosines and direction ratios, equation of a straight line in space, equation of a plane, distance of a point from a plane.
Differential calculus
Real valued functions of a real variable, into, onto and one-to-one functions, sum, difference, product and quotient of two functions, composite functions, absolute value, polynomial, rational, trigonometric, exponential and logarithmic functions.
Limit and continuity of a function, limit and continuity of the sum, difference, product and quotient of two functions, L’Hospital rule of evaluation of limits of functions.
Even and odd functions, inverse of a function, continuity of composite functions, intermediate value property of continuous functions.
Derivative of a function, derivative of the sum, difference, product and quotient of two functions, chain rule, derivatives of polynomial, rational, trigonometric, inverse trigonometric, exponential and logarithmic functions.
Derivatives of implicit functions, derivatives up to order two, geometrical interpretation of the derivative, tangents and normals, increasing and decreasing functions, maximum and minimum values of a function, Rolle’s theorem and Lagrange’s mean value theorem.
Integral calculus
Integration as the inverse process of differentiation, indefinite integrals of standard functions, definite integrals and their properties, fundamental theorem of integral calculus.
Integration by parts, integration by the methods of substitution and partial fractions, application of definite integrals to the determination of areas involving simple curves.
Formation of ordinary differential equations, solution of homogeneous differential equations, separation of variables method, linear first order differential equations.
Vectors
Addition of vectors, scalar multiplication, dot and cross products, scalar triple products and their geometrical interpretations.
PHYSICS
General
Units and dimensions, dimensional analysis; least count, significant figures; Methods of measurement and error analysis for physical quantities pertaining to the following experiments: Experiments based on using Vernier calipers and screw gauge (micrometer), Determination of g using simple pendulum, Young’s modulus by Searle’s method, Specific heat of a liquid using calorimeter, focal length of a concave mirror and a convex lens using u–v method, Speed of sound using resonance column, Verification of Ohm’s law using voltmeter and ammeter, and specific resistance of the material of a wire using meter bridge and post office box.
Mechanics
Kinematics in one and two dimensions (Cartesian coordinates only), projectiles; Uniform circular motion; Relative velocity.
Newton’s laws of motion; Inertial and uniformly accelerated frames of reference; Static and dynamic friction; Kinetic and potential energy; Work and power; Conservation of linear momentum and mechanical energy.
Systems of particles; Centre of mass and its motion; Impulse; Elastic and inelastic collisions.
Law of gravitation; Gravitational potential and field; Acceleration due to gravity; Motion of planets and satellites in circular orbits; Escape velocity.
Rigid body, moment of inertia, parallel and perpendicular axes theorems, moment of inertia of uniform bodies with simple geometrical shapes; Angular momentum; Torque; Conservation of angular momentum; Dynamics of rigid bodies with fixed axis of rotation; Rolling without slipping of rings, cylinders and spheres; Equilibrium of rigid bodies; Collision of point masses with rigid bodies.
Linear and angular simple harmonic motions.
Hooke’s law, Young’s modulus.
Pressure in a fluid; Pascal’s law; Buoyancy; Surface energy and surface tension, capillary rise; Viscosity (Poiseuille’s equation excluded), Stoke’s law; Terminal velocity, Streamline flow, equation of continuity, Bernoulli’s theorem and its applications.
Wave motion (plane waves only), longitudinal and transverse waves, superposition of waves; Progressive and stationary waves; Vibration of strings and air columns; Resonance; Beats; Speed of sound in gases; Doppler effect (in sound).
Thermal physics
Thermal expansion of solids, liquids and gases; Calorimetry, latent heat; Heat conduction in one dimension; Elementary concepts of convection and radiation; Newton’s law of cooling; Ideal gas laws; Specific heats (C_{v} and C_{p} for monoatomic and diatomic gases); Isothermal and adiabatic processes, bulk modulus of gases; Equivalence of heat and work; First law of thermodynamics and its applications (only for ideal gases); Blackbody radiation: absorptive and emissive powers; Kirchhoff’s law; Wien’s displacement law, Stefan’s law.
Electricity and magnetism
Coulomb’s law; Electric field and potential; Electrical potential energy of a system of point charges and of electrical dipoles in a uniform electrostatic field; Electric field lines; Flux of electric field; Gauss’s law and its application in simple cases, such as, to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell.
Capacitance; Parallel plate capacitor with and without dielectrics; Capacitors in series and parallel; Energy stored in a capacitor.
Electric current; Ohm’s law; Series and parallel arrangements of resistances and cells; Kirchhoff’s laws and simple applications; Heating effect of current.
Biot–Savart’s law and Ampere’s law; Magnetic field near a current-carrying straight wire, along the axis of a circular coil and inside a long straight solenoid; Force on a moving charge and on a current-carrying wire in a uniform magnetic field.
Magnetic moment of a current loop; Effect of a uniform magnetic field on a current loop; Moving coil galvanometer, voltmeter, ammeter and their conversions.
Electromagnetic induction: Faraday’s law, Lenz’s law; Self and mutual inductance; RC, LR and LC circuits with d.c. and a.c. sources.
Optics
Rectilinear propagation of light; Reflection and refraction at plane and spherical surfaces; Total internal reflection; Deviation and dispersion of light by a prism; Thin lenses; Combinations of mirrors and thin lenses; Magnification.
Wave nature of light: Huygen’s principle, interference limited to Young’s double-slit experiment.
Modern physics
Atomic nucleus; α, β and γ radiations; Law of radioactive decay; Decay constant; Half-life and mean life; Binding energy and its calculation; Fission and fusion processes; Energy calculation in these processes.
Photoelectric effect; Bohr’s theory of hydrogen-like atoms; Characteristic and continuous X-rays, Moseley’s law; de Broglie wavelength of matter waves.
ARCHITECTURE APTITUDE TEST
Freehand drawing
This would comprise of simple drawing depicting the total object in its right form and proportion, surface texture, relative location and details of its component parts in appropriate scale. Common domestic or day-to-day life usable objects like furniture, equipment, etc., from memory.
Geometrical drawing
Exercises in geometrical drawing containing lines, angles, triangles, quadrilaterals, polygons, circles, etc. Study of plan (top view), elevation (front or side views) of simple solid objects like prisms, cones, cylinders, cubes, splayed surface holders, etc.
Three-dimensional perception
Understanding and appreciation of three-dimensional forms with building elements, colour, volume and orientation. Visualization through structuring objects in memory.
Imagination and aesthetic sensitivity
Composition exercise with given elements. Context mapping. Creativity check through innovative uncommon test with familiar objects. Sense of colour grouping or application.
Architectural awareness
General interest and awareness of famous architectural creations – both national and international, places and personalities (architects, designers, etc.) in the related domain.
How to prepare for IIT JEE
For IIT JEE Entrance Exam, preparation is necessary to pass the examination. Below, we are providing some tips & tricks to crack the JEE Advanced exam:
- Manage your time to give equal importance to each subject & topics.
- Know the complete exam structure & syllabus.
- Choose correct study material & books for exam preparation.
- Make notes for the topics you have studied.
- Solve last year question papers, mock tests & sample papers. For topic wise test and full test click here.
- To achieve your goals, stay fit & healthy.
- Eat nutritious food & fruits and sleep well.